GPU accelerated 2D/3D image processing, e.g. for microscopy, via OpenCL (i.e. works on both NVIDIA and non-NVIDIA devices).
- convolutions
- denoising
- synthetic noise
- ffts (simple wrapper around reikna)
- affine transforms
Built on the excellent pyopencl bindings.
Some examples of processing tasks and their respective runtime (tests/benchmark/benchmark.py):
| Task | Image Size/type | CPU[1] | GPU[2] | GPU (w/o transfer) |
|---|---|---|---|---|
| Mean filter 7x7x7 | (128, 1024, 1024) uint8 | 1708 ms | 22 ms | 5 ms |
| Median filter 3x3x3 | (128, 1024, 1024) uint8 | 37591 ms | 49 ms | 31 ms |
| Gaussian filter 5x5x5 | (128, 1024, 1024) float32 | 4536 ms | 86 ms | 19 ms |
| Zoom/Scale 2x2x2 | (128, 1024, 1024) uint8 | 18433 ms | 133 ms | - |
| NLM denoising | (64, 256, 256) float32 | 21109 ms | 105 ms | - |
| FFT (pow2) | (128, 1024, 1024) complex64 | 3418 ms | 156 ms | 21 ms |
[1] AMD Ryzen Threadripper PRO 9965WX
[2] NVIDIA GeForce RTX 5090
- Python 3.9+
- a working OpenCL environment (check with
clinfo).
pip install gputools
Or the development version:
pip install git+https://github.com/maweigert/gputools
Check if basic stuff is working:
python -m gputools
If you experience installation issues, this might be due to pyopencl not
being properly installed. The easiest way to get a working pyopencl is via conda:
conda install -c conda-forge pyopencl
Docs are still to be done ;)
Most of the methods work on both numpy arrays or GPU memory objects (gputools.OCLArrays/OCLImage). The latter saving the memory transfer (which e.g. for simple convolutions accounts for the main run time)
- 2D-3D convolutions
- separable convolutions
- fft based convolution
- spatially varying convolutions
import gputools
d = np.zeros((128,128), np.float32)
d[64,64] = 1.
h = np.ones((17,17))
res = gputools.convolve(d,h)d = np.zeros((128,128,128), np.float32)
d[64,64,64] = 1.
hx,hy,hz = np.ones(7),np.ones(9),np.ones(11)
res = gputools.convolve_sep3(d,hx,hy,hz)bilateral filter, non local means
...
d = np.zeros((128,128,128), np.float32)
d[50:78,50:78,50:78:2] = 4.
d = d+np.random.normal(0,1,d.shape)
res_nlm = gputools.denoise.nlm3(d,2.,2,3)
res_bilat = gputools.denoise.bilateral3(d,3,4.)fast 2d and 3d perlin noise calculations
gputools.perlin3(size = (256,256,256), scale = (10.,10.,10.))scaling, translate, rotate, affine...
gputools.transforms.scale(d,.2)
gputools.transforms.rotate(d,axis = (64,64,64),angle = .3)
gputools.transforms.shift(d,(10,20,30))
...wraps around reikna
gputools.fft(d)
gputools.fft(d, inverse = True)Some configuration data (e.g. the default OpenCL platform and devic) can be changed in the config file "~/.gputools" (create it if necessary)
#~/.gputools
id_platform = 0
id_device = 1
See
gputools.config.defaultsfor available keys and their defaults.
Alternatively, the used OpenCL Device can be set via the environment variables gputools_id_device, gputools_id_platform, and gputools_use_gpu (variables present in the config file will take precendence, however).