Formerly the intelligence_layer/connectors/data, intelligence_layer/connectors/document_index and intelligence_layer/connectors/retrievers modules.
This module provides connectors for interacting with the Pharia Data Platform and Pharia Search (a.k.a. Document Index), you can use it to semantically search, access and manage data, documents.
pip install pharia-data-sdkfrom pharia_data_sdk.connectors.data import DataClient
client = DataClient(token="<token>", base_url="<base_data_platform_url>")
repositories = client.list_repositories()
repository = repositories[0]
datasets = client.list_datasets(repository.repository_id)
dataset = datasets[0]from pharia_data_sdk.connectors.document_index.document_index import DocumentIndexClient, SearchQuery
client = DocumentIndexClient(token="<token>", base_url="<base_document_index_url>")
namespaces = client.list_namespaces()
collections = client.list_collections(namespaces[0])
indexes = client.list_indexes(namespaces[0])
client.search(collections[0], indexes[0].index, SearchQuery(query="What fish is most common in swedish lakes?"))from pharia_data_sdk.connectors.retrievers.document_index_retriever import DocumentIndexRetriever
from pharia_data_sdk.connectors.document_index.document_index import DocumentIndexClient
retriever = DocumentIndexRetriever(
document_index=DocumentIndexClient(token="<token>", base_url="<base_document_index_url>"),
index_name="<index_name>",
namespace="<namespace>",
collection="<collection>",
)
retriever.get_relevant_documents_with_scores("What fish is most common in swedish lakes?")We welcome contributions! Please see our Contributing Guide for details on how to set up the development environment and submit changes.